A No Reference Image Quality Assessment Metric Based on Visual Perception

نویسندگان

  • Yan Fu
  • Shengchun Wang
چکیده

Nowadays, how to evaluate image quality reasonably is a basic and challenging problem. In view of the present no reference evaluation methods, they cannot reflect the human visual perception of image quality accurately. In this paper, we propose an efficient general-purpose no reference image quality assessment (NRIQA) method based on visual perception, and effectively integrates human visual characteristics into the NRIQA fields. First, a novel algorithm for salient region extraction is presented. Two characteristics graphs of texture and edging of the original image are added to the Itti model. Due to the normalized luminance coefficients of natural images obey the generalized Gauss probability distribution, we utilize this characteristic to extract statistical features in the regions of interest (ROI) and regions of non-interest respectively. Then, the extracted features are fused to be an input to establish the support vector regression (SVR) model. Finally, the IQA model obtained by training is used to predict the quality of the image. Experimental results show that this method has good predictive ability, and the evaluation effect is better than existing classical algorithms. Moreover, the predicted results are more consistent with human subjective perception, which can accurately reflect the human visual perception to image quality.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reduced-Reference Image Quality Assessment based on saliency region extraction

In this paper, a novel saliency theory based RR-IQA metric is introduced. As the human visual system is sensitive to the salient region, evaluating the image quality based on the salient region could increase the accuracy of the algorithm. In order to extract the salient regions, we use blob decomposition (BD) tool as a texture component descriptor. A new method for blob decomposition is propos...

متن کامل

A Machine Learning Approach to No-Reference Objective Video Quality Assessment for High Definition Resources

The video quality assessment must be adapted to the human visual system, which is why researchers have performed subjective viewing experiments in order to obtain the conditions of encoding of video systems to provide the best quality to the user. The objective of this study is to assess the video quality using image features extraction without using reference video. RMSE values and processing ...

متن کامل

A No Reference Image Quality Assessment Metric Based on Visual Perception "2279

Nowadays, how to evaluate image quality reasonably is a basic and challenging problem. In view of the present no reference evaluation methods, they cannot reflect the human visual perception of image quality accurately. In this paper, we propose an efficient general-purpose no reference image quality assessment (NRIQA) method based on visual perception, and effectively integrates human visual c...

متن کامل

Image Quality Assessment based on Perceptual Blur Metric

The recent development of digital image acquisition technologies leads to better image quality, in terms of spatial resolution and sensitivity. Image quality is a characteristic of an image that measures the perceived image degradation. Several techniques and metrics are proposed which can be classified as Full-Reference (FR) method, No-Reference (NR) method and Reduced Reference (RR) method. I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Algorithms

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2016